Единые санитарно-эпидемиологические и гигиенические требования к товарам, подлежащим санитарно-эпидемиологическому надзору (контролю)

Глава II

Раздел 9. Требования к питьевой воде, расфасованной в емкости

Требования к питьевой воде, расфасованной в емкости (КОД ТН ВЭД ТС: 2201 10)

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

- 1.1. Настоящий раздел Единых санитарных требований устанавливает гигиенические требования безопасности для человека питьевой воды, расфасованной в бутыли, бутылки, контейнеры, пакеты (далее расфасованная вода), предназначенной для реализации потребителю.
- 1.2. Действие настоящего раздела Единых санитарных требований не распространяется на минеральные природные воды (лечебные, лечебностоловые).
- 1.3. При проведении исследований возможно выделение типового образца/представителя.

Типовой образец питьевой воды, расфасованной в емкости, – образец готовой продукции одного наименования, изготовленной одним производителем в соответствии с разработанной на нее нормативнотехнической документацией, регламентирующей выпуск продукции (технические условия, технологическая инструкция).

2. ОБЩИЕ ПОЛОЖЕНИЯ

- 2.1. Производство и реализация расфасованной воды разрешается при наличии:
- документа, подтверждающего безопасность питьевой воды, расфасованной в емкости, выданного в установленном законодательством порядке;
- нормативной (технические условия и технологическая инструкция) документации, утвержденной и согласованной в установленном порядке.
- 2.2. Сроки и температурные условия хранения воды, расфасованной в емкости из синтетических материалов, должны соответствовать требованиям, указанным в нормативной документации на готовую продукцию.
- 2.3. Не допускается применение препаратов хлора для обработки питьевых вод, предназначенных для розлива, предпочтительными методами обеззараживания являются озонирование и физические методы обработки, в частности УФ-облучение.
- 2.4. Изготовители расфасованных вод обязаны обеспечить обеззараживание емкостей для розлива, а также обеззараживание или консервирование воды, гарантирующие их безопасность в эпидемическом отношении и безвредность по химическому составу.
- 2.5. Допускается для розлива расфасованной воды использование емкостей, соответствующих настоящим Единым санитарным требованиям с учетом максимальных сроков хранения в них продукции.

3. КЛАССИФИКАЦИЯ КАТЕГОРИЙ КАЧЕСТВА ПИТЬЕВЫХ ВОД, РАСФАСОВАННЫХ В ЕМКОСТИ

3.1. В зависимости от водоисточника воду питьевую подразделяют:

- на артезианскую, родниковую (ключевую), грунтовую (инфильтрационную) из подземного водоисточника;
 - на речную, озерную, ледниковую из поверхностного водоисточника;
- 3.2. В зависимости от способов водообработки воду питьевую подразделяют:
 - на очищенную или доочищенную из водопроводной сети;
- на кондиционированную (дополнительно обогащенную жизненно необходимыми макро и микроэлементами);
- 3.3. В зависимости от качества воды, улучшенного относительно гигиенических требований к воде централизованного водоснабжения, а также дополнительных медико-биологических требований, расфасованную воду подразделяют на 2 категории:

первая категория - вода питьевого качества (независимо от источника ее получения) безопасная для здоровья, полностью соответствующая критериям благоприятности органолептических свойств, безопасности в эпидемическом и радиационном отношении, безвредности химического состава и стабильно сохраняющая свои высокие питьевые свойства;

высшая категория - вода питьевого качества безопасная для здоровья самостоятельных подземных (предпочтительно родниковых ИЗ артезианских) водоисточников, надежно защищенных от биологического и химического загрязнения и оптимальная по качеству. При сохранении всех критериев для воды первой категории питьевая вода высшей категории физиологическим потребностям должна удовлетворять человека содержанию основных биологически необходимых макро И микроэлементов и более жестким нормативам по ряду органолептических, физико-химических показателей и химическому составу.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ВОД, РАСФАСОВАННЫХ В ЕМКОСТИ

- 4.1. Расфасованная вода должна соответствовать гигиеническим нормативам как при ее производстве, транспортировке, хранении, так и в течение всего установленного срока годности.
 - 4.2. Требования по безопасности расфасованных вод:
 - благоприятные органолептические свойства;
- безвредность по химическому составу (содержание основных солевых компонентов, токсичных металлов I, II и III классов опасности, токсичных неметаллических элементов и галогенов, органических веществ антропогенного и природного происхождения);
- безопасность питьевой воды в эпидемическом отношении (по бактериологическим, вирусологическим и паразитологическим показателям);
 - безопасность в радиационном отношении.
- 4.3. Физиологическая полноценность макро и микроэлементного состава расфасованной воды определяется ее соответствием установленным нормативам.

- 4.4. В качестве консервантов расфасованных вод допускаются следующие реагенты: серебро, йод, диоксид углерода.
- 4.5. Расфасованная вода для приготовления детского питания (при искусственном вскармливании детей) должна соответствовать нормативным величинам по основным показателям воды высшей категории, а также следующим дополнительным требованиям:
- не допускается использование серебра и диоксида углерода в качестве консервантов;
 - содержание фторид-иона должно быть в пределах 0.6 1.0 мг/л;
 - содержание йодид-иона должно быть в пределах 0,04 0,06 мг/л*.

5. ТРЕБОВАНИЯ К УПАКОВКЕ, МАРКИРОВКЕ, ТРАНСПОРТИРОВКЕ И ХРАНЕНИЮ РАСФАСОВАННОЙ ВОДЫ

- 5.1. Вода питьевая должна быть разлита в потребительскую тару, разрешенную органами Министерства здравоохранения для контакта с пищевыми продуктами.
- 5.2. Маркировка расфасованной воды должна содержать информацию в соответствии с требованиями действующих технических и нормативных правовых актов.

Маркировка расфасованной воды, предназначенной для детского питания, должна содержать информацию по условиям ее применения после вскрытия бутылки.

5.3. Условия хранения и транспортировки расфасованной воды должны соответствовать требованиям, указанным в нормативной документации изготовителя на готовую продукцию, утвержденную в установленном порядке.

6. ОБЩИЕ ТРЕБОВАНИЯ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ ПИТЬЕВОЙ ВОДЫ И НАПИТКАМ НА ЕЕ ОСНОВЕ

Содержание радионуклидов в питьевой воде должно быть таким, чтобы годовая доза облучения населения за счет потребления питьевой воды не превышала 0,1 мЗв в год.

Предварительная оценка качества питьевой воды по показателям радиационной безопасности может быть дана по удельной суммарной альфа- (A_{α}) и бета-активности (A_{β}) . При значениях A_{α} и A_{β} ниже 0,2 и 1,0 Бк/кг, соответственно, дальнейшие исследования воды не являются обязательными. В случае превышения указанных уровней проводится анализ содержания отдельных радионуклидов в воде.

Если при совместном присутствии в воде нескольких природных и техногенных радионуклидов выполняется условие:

$$\sum_{i} A_{i} / VB_{i} \leq 1,$$

где A_i - удельная активность і-го радионуклида в воде, Бк/кг;

* кондиционирование по йоду расфасованной воды для приготовления детского питания не является обязательным, поскольку продукты детского питания в основном сбалансированы по йоду

 ${
m YB_i}$ - соответствующие уровни вмешательства по таблице 7 приложения 9.1 к Разделу 9 Главы II настоящих Единых требований, то мероприятия по снижению радиоактивности питьевой воды не являются обязательными.

При невыполнении указанного условия защитные мероприятия по снижению содержания радионуклидов в питьевой воде должны осуществляться с учетом принципа оптимизации.

Критерии качества и нормативы безопасности питьевой воды расфасованной в емкости, даны в приложении 9.1 к Разделу 9 Главы II.

Приложение 9.1 к Разделу 9 Главы II Единых санитарно-эпидемиологических и гигиенических требований к товарам, подлежащим санитарно-эпидемиологическому надзору (контролю)

КРИТЕРИИ КАЧЕСТВА И БЕЗОПАСНОСТИ ВОДЫ, РАСФАСОВАННОЙ В ЕМКОСТИ

1. Органолептические свойства воды определяются в соответствии с нормативами, указанными в таблице 1, а также нормативами содержания основных солевых компонентов, оказывающих влияние на органолептические свойства воды, приведенными в таблицах 1 (п. І.б) и 2 (п. ІІ.а).

Таблица 1

				1111	
Показатели	Единицы	Нормативь	і качества	Показатель	
	измерения	расфасованных питьевых		вредности**	
		вод, не	более		
		Первая	Высшая		
		категория	категория		
І. КРИТЕ	РИИ ЭСТЕТ	ических св	ОЙСТВ:		
I.a. C) рганолептич	еские показато	ели:		
Запах при 20 ⁰ C	Баллы	0	0	Орг.	
При нагревании до 60 ⁰ C		1	0		
Привкус	Баллы	0	0	Орг.	
Цветность	Градусы	5	5	Орг.	
Мутность	ЕМФ	1,0	0,5	Орг.	
Водородный показатель	Единицы	6,5-8,5	6,5-8,5	Орг.	
(рH), в пределах ⁵⁾					
I.6.]	Показатели с	олевого состав	a*:		
Хлориды	мг/л	250	150	Орг.	
Сульфаты	- " -	250	150	Орг.	
Фосфаты (PO ₄ ³⁻)	мг/л	3,5	3,5	Орг.	
Примечание: <*> Показатели солевого состава, нормированные по влиянию на					
органолептические (эстетические) свойства воды.					

2. Безвредность воды по химическому составу определяется ее

- содержанию основных солевых компонентов (таблица 2, п. II.a);

соответствием нормативам по:

- содержанию токсичных металлов I, II и III классов опасности (таблица 2, п. II.б);
- содержанию токсичных неметаллических элементов и галогенов (таблица 2, п. II.в, г);

- содержанию органических веществ антропогенного и природного происхождения по обобщенным и отдельным показателям (таблица 2, п. ІІ.д).

Таблица 2

				T	Габлица 2
Показатели	Единицы	Нормативы		Показатель вредности ¹⁾	Класс
	измерения	каче	качества		опаснос
		расфасова	нных вод,		ТИ
		не бо	олее		
		Первая	Высшая		
		катего-	катего-		
		рия	рия		
1	2	3	4	5	6
ІІ. КРИТЕРИИ	БЕЗВРЕДНО	СТИ ХИМ	ИЧЕСКОГ	O COCTABA	
II.a. Пок	азатели солен	вого и газов	вого состав	sa <**>:	
Силикаты (по Si)	мг/л	10	10	СТ.	2
Нитраты (по NO ₃ -)	мг/л	20	5	орг.	3
Цианиды (по CN ⁻)	мг/л	0,035	0,035	СТ.	2
Сероводород (Н2S)	мг/л	0,003	0,003	орг. зап.	4
	II.б. Токо	сичные мет	аллы:		
Алюминий (Al)	мг/л	0,2	0,1	СТ.	2
Барий (Ва)	мг/л	0,7	0,1	СТ.	2
Бериллий (Ве)	мг/л	0,0002	0,0002	СТ.	1
Железо (Fe, суммарно)	мг/л	0,3	0,3	орг.	3
Кадмий (Cd, суммарно)	мг/л	0,001	0,001	СТ.	2
Кобальт (Со)	мг/л	0,1	0,1	СТ.	2
Литий (Li)	мг/л	0,03	0,03	СТ.	2
Марганец (Мп)	мг/л	0,05	0,05	орг.	3
Медь (Си, суммарно)	мг/л	1	1	орг.	3
Молибден (Мо,	мг/л	0,07	0,07	СТ.	2
суммарно)					
Натрий (Na)	${ m M}\Gamma/\Pi$	200	20	СТ.	2
Никель (Ni, суммарно)	${ m M}\Gamma/\Pi$	0,02	0,02	СТ.	3
Ртуть (Hg, суммарно)	мг/л	0,0005	0,0002	СТ.	1
Селен (Se)	мг/л	0,01	0,01	СТ.	2
Серебро (Ад)	мг/л	0,025	0,0025	СТ.	3
Свинец (Рь, суммарно)	${ m M}\Gamma/{ m J}$	0,01	0,005	СТ.	2
Стронций (Sr^{2+})	мг/л	7	7	СТ.	2
Сурьма (Sb)	мг/л	0,005	0,005	СТ.	2
Хром (Cr ⁶⁺)	мг/л	0,05	0,03	СТ.	3
Цинк (Zn ²⁺)	мг/л	5	3	орг.	3
	оксичные не	металличес	ские элеме	 НТЫ:	
Бор (В)	мг/л	1,0	0,3	СТ.	2
Мышьяк (As)	- " -	0,01	0,006	_ '' _	2
Озон 2)	- " -	0,1	0,1	орг.	3
	II.r.	Галогены:			

Бромид - ион	мг/л	0,2	0,1	СТ.	2		
Хлор остаточный							
связанный 4)	- " -	0,1	0,1	орг.	3		
Хлор остаточный							
свободный ⁴⁾	- " -	0,05	0,05	орг.	3		
ІІ.д. І	II.д. Показатели органического загрязнения:						
Окисляемость							
перманганатная	мг $O_2/л$	3	2	-	-		
Аммиак и аммоний -	мг/л	0,1	0,05				
ион							
Нитриты (по NO_2)	мг/л	0,5	0,005	орг.	2		
Органический углерод	мг/л	10	5	-	-		
Поверхностно -							
активные вещества							
(ПАВ),							
анионоактивные	мг/л	0,05	0,05	орг.	-		
Нефтепродукты	мг/л	0,05	0,01	орг.	-		
Фенолы летучие							
(суммарно)	мкг/л	0,5	0,5	орг. зап.	4		
Хлороформ ⁴⁾	мкг/л	60	1	СТ.	2		
Бромоформ ⁴⁾	мкг/л	20	1	СТ.	2		
Дибромхлорметан ⁴⁾	мкг/л	10	1	СТ.	2		
Бромдихлорметан ⁴⁾	мкг/л	10	1	СТ.	2		
Четыреххлористый							
углерод ⁴⁾	мкг/л	2	1	СТ.	2		
Формальдегид	мкг/л	25	25	СТ.	2		
Бенз(а)пирен	мкг/л	0,005	0,001	СТ.	2		
Ди(2-	мкг/л	6	0,1	СТ.	2		
этилгексил)фталат							
Гексахлорбензол	мкг/л	0,2	0,2	СТ.	2		
Линдан							
(гамма -изомер ГХЦГ)	мкг/л	0,5	0,2	СТ.	1		
2,4-Д	мкг/л	1	1	СТ.	2		
Гептахлор	мкг/л	0,05	0,05	СТ.	2		
ДДТ (сумма изомеров)	мкг/л	0,5	0,5	СТ.	2		
Атразин	мкг/л	0,2	0,2	СТ.	2		
Симазин	мкг/л	0,2	0,2	орг.	4		
II.e. K	Омплексные	показатели	токсично	сти ³⁾ :			
По Σ ΝΟ2 и ΝΟ3	единицы	≤ 1	≤ 1	-	_		
По Σ тригалометанов	_ '' _	≤ 1	≤ 1	-	-		
	1	l	l .	ı	L		

Примечание: <**> Показатели солевого состава, нормированные по токсическому влиянию на организм.

¹⁾ Лимитирующий признак вредности вещества, по которому установлен норматив: "с.-т." - санитарно - токсикологический, "орг." - органолептический.

²⁾ Контроль за содержанием остаточного озона производится после камеры смешения при обеспечении времени контакта не менее 12 минут.

3) Рассчитываются по формуле: $\Sigma = \frac{C_1}{\Pi \cancel{\square} K_1} + \frac{C_2}{\Pi \cancel{\square} K_2} + \frac{C_B}{\Pi \cancel{\square} K_B}$, где

С - содержание в расфасованной воде конкретного в-ва в мг (мкг)/л;

 Π ДК - предельно допустимая концентрация этого вещества в расфасованной воде с учетом ее категории в мг (мкг)/л.

Рекомендуемая величина $\Sigma \leq 1$.

- 4) Анализ выполняется только расфасованной воды, источником которой является питьевая вода из централизованных систем питьевого водоснабжения.
 - 5) Для газированных вод допускается ниже 6,5 единиц (до 4,5).

3. Оценка качества питьевой воды по показателям радиационной безопасности.

Таблица 3

Показатели	Единицы	Нормативы качества		Показатель	
	измерения	расфасованных	вод, не более	вредности1)	
		Первая	Высшая		
		категория	категория		
По	Показатели радиационной безопасности:				
Удельная суммарная α	Бк/л	0,2	0,2	радиац.	
- радиоактивность					
Удельная суммарная β	- " -	1	1	- « -	
- радиоактивность					

Примечание: Эффективная доза, создаваемая при годовом потреблении расфасованной воды не должна превышать 0,1 мЗв.

4. Безопасность в эпидемическом отношении определяется по микробиологическим и паразитологическим показателям в соответствии с таблицей

Таблица 4

Показатели	Нормативы качества расфасованных вод			
	Первая	Высшая		
	категория	категория		
IV.a. Ба	ктериологические показа	тели:		
$OMЧ$ при температуре 37 $^{\circ}C$	не более 20 КОЕ в 1мл	не более 20 КОЕ в 1мл		
$OMЧ$ при температуре 22 ^{0}C	не более 100 КОЕ в 1мл	не более 100 КОЕ в 1мл		
Общие колиформные	отсутствие КОЕ в 300 мл	отсутствие КОЕ в 300 мл		
бактерии				
Термотолерантные	отсутствие КОЕ в 300 мл	отсутствие КОЕ в 300 мл		
колиформные бактерии				
Глюкозоположительные	отсутствие КОЕ в 300 мл	отсутствие КОЕ в 300 мл		
колиформные бактерии				
Споры	отсутствие КОЕ в 20 мл	отсутствие КОЕ в 20 мл		
сульфитредуцирующих	-	-		
клостридий				
Pseudomonas aeruginosa	отсутствие в 1000 мл	отсутствие в 1000 мл		
IV.б. Вирусологические показатели:				

Колифаги	отсутствие БОЕ	отсутствие БОЕ			
	в 1000 мл	в 1000мл			
IV.B	IV.в. Паразитарные показатели:				
Ооцисты криптоспоридий	отсутствие в 50 л	отсутствие в 50 л			
Цисты лямблий	отсутствие в 50 л	отсутствие в 50 л			
Яйца гельминтов	отсутствие в 50 л	отсутствие в 50 л			

5. Физиологическая полноценность макро- и микроэлементного состава определяется в соответствии с нормативами, представленными в таблице 5.

Таблица 5

Показатели	Единицы	Нормативы	Нормативы качества	
	измерения	физиологической	расфасова	нных вод
		полноценности	Первая	Высшая
		питьевой воды,	категория	категория
		в пределах		
1	2	3	4	5
Общая минерализация				
(сухой остаток), в				
пределах	мг/л	100 - 1000	50 - 1000	200 - 500
Жесткость	мг-экв/л	1,5 - 7	не более 7	1,5 - 7
Щелочность	- " -	0,5 - 6,5	не более 6,5	0,5 - 6,5
Кальций (Са)	мг/л	25 - 130 ^{<*>}	не более 130	25 - 80
Магний (Mg)	мг/л	5 - 65 <*>	не более 65	5 - 50
Калий (К)	мг/л	-	не более 20	2 - 20
Бикарбонаты (HCO ₃ -)	мг/л	30 - 400	не более 400	30 - 400
Фторид - ион (F)	мг/л	0,5 - 1,5	не более 1,5	0,6 - 1,2
Йодид - ион (J)	мкг/л	10 - 125	не более 125	40 - 60<***>

Примечания:

- <*> Расчетно: исходя из максимально допустимой жесткости 7 мг-экв/л и учета минимально необходимого уровня содержания магния при расчете максимально допустимого содержания кальция и наоборот.
- <**> Йодирование воды на уровне ПДК допускается при отсутствии профилактики йоддефицита за счет йодированной соли при условии соблюдения допустимой суточной дозы (ДСД) йодид иона, поступающего суммарно из всех объектов окружающей среды в организм.
- <***> Йодирование воды на уровне 40-60 мкг/л разрешается в качестве способа массовой профилактики йоддефицита при использовании иных мер профилактики.

6. В качестве консервантов допускаются реагенты, указанные в таблице 6.

Таблица 6

Консерванты	Единицы	Предельно	Нормативы качества	
	измерения	допустимая	расфасованных вод, не боле	
		концентрация в	Первая	Высшая
		питьевой воде	категория	категория
Серебро (Ад)	мг/л	0,05	0,025	0,0025

Йод (Ј)	- " -	0,125	0,06	0,06
Диоксид углерода(СО2)	%	0,4 ^{<*>}	0,4	0,2

Примечание: <*> содержание выше 0,4 допускается при указании содержания CO₂ на этикетке.

7. Значения уровней вмешательства УВ (Бк/кг) по содержанию отдельных радионуклидов в питьевой воде представлены в таблице 7.

Таблица 7

Нуклид	УВ,	Нуклид	УВ,
	Бк/кг		Бк/кг
H-3	7600	Tc-97	2000
Be-7	4900	Tc-97m	250
C-14	240	Tc-99	210
Na-22	43	Ru-97	910
P-32	57	Ru-103	190
P-33	570	Ru-106	20
S-35	178	Rh-105	370
C1-36	150	Pd-103	720
Ca-45	190	Ag-105	290
Ca-47	86	Ag-110m	49
Sc-46	91	Ag-111	110
Sc-47	250	Cd-109	69
Sc-48	81	Cd-115	98
V-48	69	Cd-115m	42
Cr-51	3600	In-111	470
Mn-51	1500	In-114m	33
Mn-52	76	Sn-113	190
Mn-53	4600	Sn-125	44
Mn-54	193	Sb-122	81
Fe-55	420	Sb-124	55
Fe-59	76	Sb-125	120
Co-56	55	Te-123m	86
Co-57	650	Te-127	810
Co-58	190	Te-127m	60
Co-60	40	Te-129	2100
Ni-59	2200	Te-129m	46
Ni-63	910	Te-131	1600
Zn-65	35	Te-131m	72
Ge-71	11400	Te-132	36
As-73	530	I-123	650
As-74	110	I-125	9,1
As-76	86	I-126	4,7
As-77	340	I-129	1,3
Se-75	53	I-130	69
Br-82	250	I-131	6,2

Нуклид	УВ,	Нуклид	УВ,
71.01	Бк/кг	~	Бк/кг
Rb-86	49	Cs-129	2300
Sr-85	240	Cs-131	2400
Sr-89	53	Cs-132	270
Sr-90	4,9	Cs-134	7,2
Y-90	51	Cs-135	69
Y-91	57	Cs-136	46
Zr-93	120	Cs-137	11
Zr-95	140	Cs-138	1500
Nb-93m	1100	Ba-131	300
Nb-94	81	Ba-140	53
Nb-95	240	La-140	69
Mo-93	44	Ce-139	530
Mo-99	220	Ce-141	190
Tc-96	120	Ce-143	120
Ce-144	26	Th-231	400
Pr-143	110	Th-232	0,60
Nd-147	120	Th-234	40
Pm-147	530	U-230	2,5
Pm-149	140	U-231	490
Sm-151	1400	U-232	0,42
Sm-153	190	U-233	2,7
Eu-152	98	U-234	2,8
Eu-154	69	U-235	2,9
Eu-155	430	U-236	2,9
Gd-153	510	U-237	180
Tb-160	86	U-238	3,0
Er-169	370	Pa-230	150
Tm-171	1200	Pa-231	0,19
Yb-175	310	Pa-233	160
Ta-182	91	Np-237	1,3
W-181	1800	Np-239	170
W-185	310	Pu-236	1,6
Re-186	91	Pu-237	1400
Os-185	270	Pu-238	0,60
Os-191	240	Pu-239	0,55
Os-193	170	Pu-240	0,55
Ir-190	110	Pu-241	29
Ir-192	98	Pu-242	0,57
Pt-191	400	Pu-244	0,57
Pt-193m	300	Am-241	0,69
Au-198	140	Am-242	460
Au-199	310	Am-242m	0,72
Hg-197	600	Am-243	0,69
Hg-203	72	Cm-242	14
	, =		1 * '

Нуклид	УВ,	Нуклид	УВ,
	Бк/кг		Бк/кг
T1-200	690	Cm-243	0,91
Tl-201	1400	Cm-244	1,1
T1-202	300	Cm-245	0,65
T1-204	110	Cm-246	0,65
Pb-203	570	Cm-247	0,72
Pb-210	0,20	Cm-248	0,18
Bi-206	72	Bk-249	240
Bi-207	110	Cf-246	42
Bi-210	110	Cf-248	4,9
Po-210	0,11	Cf-249	0,39
Ra-223	1,4	Cf-250	0,86
Ra-224	2,1	Cf-251	0,38
Ra-225	1,4	Cf-252	1,5
Ra-226	0,49	Cf-253	98
Ra-228	0,20	Cf-254	0,34
Th-227	16	Es-253	22
Th-228	1,9	Es-254	4,9
Th-229	0,28	Es-254m	33
Th-230	0,65		